
PARALLELIZING DATA-CENTRIC PROGRAMS

JOHANNES GEHRKE

CORNELL UNIVERSITY, INC

09/25/2013
Final Report 

DISTRIBUTION A: Distribution approved for public release.

AIR FORCE RESEARCH LABORATORY
AF OFFICE OF SCIENTIFIC RESEARCH (AFOSR)/RSL

ARLINGTON, VIRGINIA 22203
AIR FORCE MATERIEL COMMAND

AFRL-OSR-VA-TR-2013-0520

Page 1 of 1

10/1/2013file://\\52zhtv-fs-725v\CStemp\adlib\input\wr_export_131001152914_1870339939...



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
08 JUN 2013 2. REPORT TYPE 

3. DATES COVERED 
    

4. TITLE AND SUBTITLE 
Parallelizing Data-Centric Programs 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Cornell University,4130 Upson Hall,Ithaca ,NY,14853 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

21 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
 

2. REPORT TYPE 
 

3. DATES COVERED (From - To) 
  

4. TITLE AND SUBTITLE 
 

5a. CONTRACT NUMBER 
 

 
 

5b. GRANT NUMBER 
 

 
 

5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
 

5d. PROJECT NUMBER 
 

 
 

5e. TASK NUMBER 
 

 
 

5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

 
 
 
 
 

 
 
 
 
 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
   
   
  11. SPONSOR/MONITOR’S REPORT  
        NUMBER(S) 
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
 
 
 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
 

15. SUBJECT TERMS 
 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
 

a. REPORT 
 

b. ABSTRACT 
 

c. THIS PAGE 
 

  
 

19b. TELEPHONE NUMBER (include area 
code) 
 

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18 

18-06-2013 Final Technical May 2010 - May 2013

Parallelizing Data-Centric Programs N/A

FA9550-10-1-0202

N/A

Gehrke, Johannes E N/A

N/A

N/A

Cornell University, 4130 Upson Hall, Ithaca NY 14853
OSP 60858

Air Force Office of Scientific Research, 875 North Randolph Street, Suite 325, Room 
3112, Arlington VA 22203

AFOSR

Approved for public release, distribution is unlimited.

Increasingly, the Air Force relies on data-centric software for strategic applications. We have studied data-centric software 
applications on unique types of datasets -- graphs, spatial data and collections of images.  As a result of our work on graphs, 
we have developed a new high-performance parallel graph processing framework called GRACE. For spatial data, we have 
conducted a comprehensive benchmarking study of existing join processing algorithms and made our benchmark available to 
the public to promote further improvements for this important class of algorithms. Second, we have examined the applicability of 
general purpose cloud infrastructure for data-centric applications. We have conducted extensive performance studies and 
developed a jitter-tolerant runtime for tick-based applications as well as a deployment advisor for such applications. Third, we 
have studied the problem of parallel agents who need to communicate and coordinate to achieve a common goal. We have 
developed a novel abstraction called entangled queries that allows simple and efficient coordination in a wide variety of realistic 
scenarios.  

data-centric software, graph processing, similarity search, entangled queries

U U U

U 19

607-821-1685



Final Report: Parallelizing Data-Centric Programs

September 18, 2013

1 Overview

Increasingly, the Air Force relies on data-centric software for strategic applications. Data-
centric software consists of programs that perform complex computations on very large
datasets, in scenarios where fast and accurate performance is critical. However, main-
taining this performance is becoming more and more challenging. The input datasets are
continually growing larger, and the algorithms to be applied to these huge datasets are
becoming more sophisticated and computationally expensive.

Until recently, we could rely on increasing clock frequency due to Moore’s law to offset
these growing performance demands on data-centric software. Over the last few years,
however, Moore’s law has hit a sharp boundary: power dissipation within a single core has
reached its physical limits with current clock frequencies. Hardware continues to improve,
but the main driver of performance gains is now increased parallelism. The number of
cores on modern chips is constantly growing; also, modern cloud computing infrastructure
provides programmers with multi-node clusters that are able to process parallel programs
at an unprecedented scale.

In the research sponsored by this grant, we have explored a broad range of opportunities
presented by parallelism for data-centric software.

First, we have studied data-centric software applications on unique types of datasets –
graphs, spatial data and collections of images. As a result of our work on graphs, we have
developed a new high-performance parallel graph processing framework called GRACE.
For spatial data, we have conducted a comprehensive benchmarking study of existing join
processing algorithms and made our benchmark available to the public to promote further
improvements for this important class of algorithms. For image collections, we have studied
the problem of discovering similar images within a collection and designed a number of novel
algorithms to solve this problem.

Second, we have examined the applicability of general purpose cloud infrastructure for
data-centric applications. We have conducted extensive performance studies and developed
a jitter-tolerant runtime for tick-based applications as well as a deployment advisor for such
applications.

Third, we have studied the problem of parallel agents who need to communicate and
coordinate to achieve a common goal. We have developed a novel abstraction called en-
tangled queries that allows simple and efficient coordination in a wide variety of realistic
scenarios.

1



The following is a summary of the publications resulting from the work funded by this
grant, arranged by project.

• Parallel Graph Processing: [WXDG13]

• Benchmarking Spatial Indexing: [SCS+14]

• Image Processing and Parallel Similarity Search: [ZLG11, LCG12, LSG12]

• Data-Driven Applications in the Cloud: [ZWS+11, CSS+11a, CSS+11b, ZBS+12]

• Declarative Abstractions for Coordination: [GKR+11, GKB+11, GNR+11,
MOS+12]

2 Parallel Graph Processing

2.1 Combining synchronous and asynchronous models

A lot of modern data-centric software operates on datasets that represent graphs. These
graphs may describe the Web, public social networks or other networks of strategic impor-
tance to organizations like the Air Force (e.g. networks related to telecommunications or
other infrastructure), but they are all typically very large. Modern data-centric applications
often require that complex analysis be run over these large graphs, which is computationally
infeasible unless we exploit parallelism to help.

To fill the need for a parallel graph processing infrastructure, several programming
frameworks have been proposed. Most of these frameworks are based on the bulk syn-
chronous parallel (BSP) model in order to simplify application development. In the BSP
model, iterative algorithms proceed by processing all graph vertices in fixed rounds until
convergence. However, convergence is often slow if all vertices are processed in lockstep
in each round. Asynchronous execution, in which the vertices are updated in a carefully-
chosen order, often leads to much faster convergence. However, asynchronous graph pro-
cessing models are typically much harder to understand and program than synchronous
ones.

In our GRACE project, we have created a solution that combines the easy programma-
bility of the BSP model with the high performance of asynchronous execution. GRACE is
a new graph programming platform that separates application logic from execution poli-
cies. It provides a synchronous iterative graph programming model that enables users to
easily implement, test, and debug their applications. It also contains a carefully designed
and implemented parallel execution engine for both synchronous and user-specified built-in
asynchronous execution policies. Our experiments show that asynchronous execution in
GRACE can yield convergence rates comparable to fully asynchronous execution, while
still achieving the near-linear scalability of a synchronous BSP system.

We illustrate the benefits of GRACE on a sample graph application: Image restoration
(IR) for photo analysis. In this application the color of an image is captured by a large
pair-wise Markov random field (MRF) with each vertex representing a pixel in the image.
Belief propagation is used to compute the expectation of each pixel iteratively based on

2



Figure 1: Qualitative Evaluation of BP Restoration on Lenna Image. Left: noisy (σ = 20).
Right: restored

 0

 50

 100

 150

 200

 250

1 2 4 8 16

R
u

n
n

in
g

 T
im

e 
(s

ec
)

Number of Worker Threads

GE - S-J
Manual

Figure 2: SfM Running Time

 2

 4

 6

 8

 10

 12

 14

 16

 2  4  6  8  10  12  14  16

S
p

ee
d

u
p

Number of Worker Threads

Ideal
GE - S-J
Manual

Figure 3: SfM Speedup

the observed dirty “pixel” value and weighted neighbor values. A qualitative example that
shows the effectiveness of the BP algorithm is shown in Figure 1.

We have created a GRACE implementation of image restoration that is logically equiv-
alent to a program manually written by domain experts. The performance results for up
to 16 worker threads are shown in Figure 2, and the corresponding speedup results are
shown in Figure 3. The algorithm reimplemented in GRACE has less elapsed time on a
single CPU, illustrating that GRACE does not add significant overhead. The GRACE im-
plementation also has better multicore speedup, in part because the manually written code
estimates the absolute camera poses and the labeling error sequentially, while following the
GRACE programming model this functionality is parallelized.

2.2 Increasing performance through block execution

We have also studied the important class of computationally light graph applications – ap-
plications that perform little computation per vertex. These applications have severe scal-
ability problems across multiple cores, as they hit an early memory bandwidth “wall” that

3



To-be-Updated Vertices Dependent Vertices Unrelated Vertices

Block Boundary

(a) Vertex-Oriented Computation (b) Block-Oriented Computation

Figure 4: Vertex- vs. Block-Oriented Computation

limits their speedup. We introduced a novel block-oriented computation model in which
computation is iterated locally over blocks of highly connected nodes, thus significantly
improving the amount of computation per cache miss. We also designed and implemented
a block-aware graph processing runtime that keeps the familiar vertex-centric programming
paradigm while reaping the benefits of block-oriented execution.

Figure 4 illustrates the two computational models: Small red, yellow, and green circles
represent vertices to be updated, vertices on which the update depends, and vertices unre-
lated to the current update. In the vertex model, only one vertex and the data on which it
depends are loaded from memory for each update, while in the block processing model, all
the vertices belonging to the same block are loaded from memory and updated together.
For a cluster of processors, one can first partition the graph and assign subgraphs to the
processors, then further partition the assigned subgraph into blocks. The subgraphs are
chosen to minimize the number of edges between them, so that adjacent vertices are likely
to be in the same block. Our experiments show that block-oriented execution significantly
improves performance of our framework for several graph applications.

3 Benchmarking Spatial Indexing

Spatial datasets are another important use case for high-performance data-centric soft-
ware. Civilian applications that use spatial data include location-based services [MK03],
games [WDK+07], virtual worlds [GDG+09], and scientific simulations [Ver67, WSS+10].
Many of these applications have counterparts in the military setting and thus are of high
interest to the Air Force. In all these applications, moving objects continuously explore
and sense their environment. For example, agents in games or behavioral simulations must
query their surroundings in the virtual environment in order to decide what to do next.

4



Since many moving objects may issue similar spatial queries repeatedly, the spatial
join is a key primitive in many of these applications. It is also common for applications
such as simulations and games to batch updates in order to support evolving data more
efficiently. In these applications, batches correspond naturally to the logical timesteps built
into the application model. Thus many spatial applications effectively process repeated or
iterated spatial joins, intermixed with batches of updates. We have observed that all of the
example applications above, as well as many others, can be run completely in main memory.
Furthermore, several recent studies have argued that many moving-object applications,
including traditional location based services such as flight tracking, can tolerate some query
staleness [DBVS11, ŠRJŠ11]. However, these applications require very low response times
even in the presence of significant query and update rates.

In our research, we experimentally studied techniques to efficiently process iterated
spatial joins for moving object applications. Determining the most efficient techniques to
process these spatial joins is challenging for a variety of reasons. First, there have been
a tremendous number of join algorithms proposed in the literature, many of which have
never been compared directly.

Second, developers must choose a method to process updates. Since objects move
through space, we can take advantage of techniques for indexing moving objects to avoid
applying position updates [PCC04, vJLL00] or even update the join result itself incre-
mentally [ISS06]. Alternatively, since updates can be batched in many moving object
applications, we can either rebuild a static index or reread the data for a bulk join method.

Third, many existing algorithms for spatial joins were optimized for disk resident data
since their workloads traditionally did not fit in memory. As main memory sizes continue
to grow, this constraint no longer holds, so in addition to all of the decisions above, devel-
opers of high-performance spatial applications must decide which methods make sense for
a main memory environment. In particular, they must consider whether memory hierar-
chy optimizations developed for disks translate naturally into cache optimizations for main
memory.

Although previous benchmarking studies provided some guidance to developers, they
fell short of comprehensively addressing the breadth of options for moving object appli-
cations. The novelty of our work lies in revisiting the vast literature on spatial joins in
light of emerging workloads and commodity hardware. No previous experimental study had
clarified the performance tradeoffs for the workloads we were interested in. We derived the
non-obvious conclusion that if batching of queries and updates is permissible, then static
methods that rebuild index structures from scratch outperform incremental methods in all
but the most extreme cases. More specifically, we made the following contributions:
A Study With Many, Varied Algorithms: Our study compared ten representative
techniques from the literature. We compared index nested loops joins using a variety of
static and moving spatial indices as well as several special purpose spatial join algorithms.
Some of these approaches had been evaluated independently in the literature, but to our
knowledge no existing study had compared them all.
Experiments with Multiple Moving Object Workloads: We tuned all of the algo-
rithms for main memory, and evaluated them on uniform and skewed random workloads
as well as two workloads motivated by high-performance spatial applications: a behavioral

5



simulation of schooling fish [CKFL05] and a simple model of motion on road networks, which
had previously been used to evaluate moving object indices [CJL08]. We experimented with
a wide range of parameters so that our results can be applied to many different scenarios.
A Benchmark with Open-Source, Extensible Code: To motivate further evaluation
of future and existing iterated spatial join techniques, we organized our benchmark as an
extensible framework and made it available as infrastructure for the community [a]. Our
APIs, code, and scripts give developers of novel algorithms easy access to an environment
in which they can objectively test their algorithms against previous work. Until now, such
testing has required re-implementation of previous work in a common environment.
Integration of Parallelism and Predictive Queries: In addition to comprehensively
evaluating alternative methods to perform iterated spatial joins on a single processor, we
also experimented with the best methods on more complex predictive queries as well as
with multi-core partitioned parallelism. These additional experiments suggest directions
for future research on parallel efficiency and use of static methods for even more complex
query types.

4 Image Processing and Parallel Similarity Search

4.1 Image processing

Another type of dataset often processed by data-centric software is image collections,
whether these come from public sites like Facebook or Flickr or from the various sensors
and surveillance systems used by the Air Force.

In recent years, a number of new geometric computer vision applications have been built
to reconstruct representations of landmarks using large-scale photo collections of places
[FFGG+10, SSS06]. A key requirement of these systems is to identify the connectivity of
an image collection in the form of an image graph where each image is a node, and where an
edge connects each pair of images that visually overlap. For unstructured image collections,
the structure of this graph is initially unknown—i.e., we don’t know which pairs of images
match, and accordingly what edges exist—and thus needs to be discovered, usually using
the tools of feature matching (e.g., with SIFT [Low04]) and RANSAC-based geometric
verification [HZ03] to test the existence of edges (i.e., overlapping images). However, this
verification process is relatively expensive, and so it is desirable to obtain an image graph
that is as complete as possible while rigorously matching and verifying a minimal number
of edges.

Given an image collection, it is often unnecessary to discover a complete description
of the underlying image graph, as a much sparser graph is sufficient to capture enough
information for many applications. For example, if the graph underlying a set of n images
is complete (i.e., each image overlaps every other image), then discovering a star graph
(one with n − 1 edges, each connecting one node to a central node) might be a sufficient
description of the graph for some applications, as compared to exhaustively matching all n
choose 2 pairs of images. In the context of structure from motion (SfM), a sparse graph is
often even more desirable than a complete description. On the other hand, breaking the
graph into separate connected components (CCs) is undesirable. As a motivating example,

6



Figure 5: A visual path from Il Vittoriano to the Colosseum in our Forum dataset. Each
consecutive image pair exhibits spatial overlap. In an image graph, links between two
densely-connected subgraphs are important for applications such as 3D reconstruction and
visualization as they contribute to a more complete scene and a smoother reconstructed
model.

Figure 5 shows a “visual path” through a set of images of Rome (out of a collection of nearly
75K images) connecting two landmarks, the Il Vittoriano Monument and the Colosseum.
While both these landmarks are densely photographed, photos linking the two are much
more difficult to find. Hence, finding such connections is critical to linking these two
monuments in a 3D model. This motivates our goal in this project: We developed ways of
discovering the large CCs of an image collection as completely, and as efficiently, as possible.

We achieved our goal through a method that proposes edges to verify through feature
matching and spatial verification. If each edge verification step on an image pair successfully
found a match, then the problem would be much easier—we would need to test at most
n − 1 edges to find a spanning forest for the image collection. In practice, however, it is
difficult to know in advance which pairs to test, as many pairs of images do not match.

Another source of difficulty comes from the fact that large-scale image datasets often
contain many (nearly) singleton images, i.e., images that match no or very few other images.
Verifications on such images are wasted. Even worse, some near-singleton images contain
“confusing” features that result in them being similar to other images under bag-of-words
methods. Detecting such “bad” singleton images is expensive because in the worst case we
have to verify a query image against all other images in the dataset to conclude that the
query image is indeed a singleton. Currently, most large-scale matching systems do not
explicitly model such outlier images, and hence waste computation time trying to match
them.

To address the above challenges, we developed an efficient and effective algorithm called
Image Graph Miner (IGMiner) that applies to large-scale collections of images of scenes
to discover large CCs. IGMiner works by intelligently maintaining a shortlist of image
pairs to match, and re-ranking this shortlist over time based on feedback from successful
and unsuccessful prior matches. We showed that a novel algorithm based on relevance

7



feedback can be employed in IGMiner to effectively re-rank image pairs while introducing
little overhead in the image retrieval process. This algorithm significantly improves the
success rate of finding true matching pairs. To prevent singleton images from appearing in
the shortlists of other images, we also proposed a simple yet effective measure called rank
distance to prune out false positives and to increase the probability of success. Finally, we
use an information-theoretic model of the problem to choose edges that minimize expected
entropy given estimated prior probabilities of matches based on visual similarities.

We demonstrated the effectiveness of IGMiner on several image collections with ground
truth obtained by exhaustive geometric verification, as well as larger image collections
with tens or hundreds of thousands of images. Our experiments showed that IGMiner
can effectively identify large CCs in an image graph with a relatively small number of
matching operations, and that for large problems it can produce significantly better results
than current techniques, such as ImageWebs [HGO+10], given the same budget of matches
performed.

4.2 Scalable Parallel Similarity Search

The work described above spurred us to develop solutions for another problem that has
applications far beyond image processing, namely, similarity search. Finding similar ob-
jects is a very common problem, occurring in domains such as document and image clus-
tering [CM10, HGI00], plagiarism detection [SGWG06], near duplicate documents detec-
tion [Hen06], 3D scene reconstruction [ASS+09], similar music and video retrieval [FML04,
TBTL07], community mining [SSB05], and personalized recommendations [DDGR07]. Again,
many of these applications in the civilian world have military counterparts and the ability
to perform fast similarity search is critical to the needs of the Air Force.

A natural way to describe complex objects is to represent them as vectors in a high
dimensional space, where the dimensions correspond to the features extracted from the
objects. For example, there are hundreds of thousands of words in an unabridged English
dictionary, and usually each word is considered a feature. Standard content-based image
retrieval algorithms preprocess images by extracting local features [Low04] and quantizing
them into visual words [NS06]; research shows that retrieval systems using a million visual
words tend to outperform those using a smaller visual vocabulary [NS06]. Large-scale rec-
ommendation systems need to find the similarities of users over millions of items [DDGR07].
In many important applications, these vectors are either binary, or can be approximated
by binary vectors.

In this project, we introduced a novel concept for similarity search that is based on
the use of random filters. Algorithms built on this idea repeatedly apply random filters to
discard irrelevant vector pairs; thus, we call them filtering-based algorithms. We showed
that we can use truly random permutations to cheaply generate each random filter, then
use inverted indexes to compute the intersection between the outputs of all filters to arrive
at the candidate set. In addition, we demonstrated that truly random permutations can
also be used to reliably estimate the similarity between vector pairs. This leads to a
new candidate filtering algorithm, which works especially well for objects whose vector
representation typically contains many non-zero elements, such as text, images, and videos.

8



Finally, we observed that cluster-like structures abound in real data; text documents can
be described with a set of topics, and photographs are often taken near objects of interests.
We proposed a clustering algorithm that exploits this property for further speed-up.

The main contributions of this project were as follows:

• We proposed a filtering-based algorithm for generating vector pairs whose similarities
are likely to be above the given threshold. This algorithm significantly outperforms
other candidate generation algorithms for low similarity thresholds, supports incre-
mental queries, and can easily be parallelized.

• We presented an efficient algorithm for estimating the similarities between vector
pairs. We showed analytically that we only need to examine a fixed fraction of the
dimensions in order to discard irrelevant vector pairs.

• We presented a fast approximate clustering algorithm that exploits cluster structures
in real data. Our algorithm uses random sampling and probabilistic assignments, and
can reduce the search space by up to 92% while discarding less than 1% of the true
positives.

• Based on these three ideas, we developed a novel probabilistic similarity search al-
gorithm called ATLAS, and we provide experimental results on several real-world
datasets. At a 97.5% recall rate, ATLAS is up to 210 times faster than previous exact
algorithms and up to 80 times faster than previous approximate algorithms.

5 Data-Driven Applications in the Cloud

In this project, we investigated what happens when data-centric software is moved from
expensive custom HPC centers and private clusters into the cheaper but much less controlled
environment of the public cloud. Our results are important for any organization considering
the pros and cons of using more economical cloud infrastructure for their data-centric needs.
The Air Force, of course, has aspects beyond raw performance to consider, such as data
security; however, performance is also a factor whose importance cannot be discounted.

Our specific focus in this project was on scientific simulations that make frequent use of
synchronization barriers. Because of these barriers, the code is very sensitive to fluctuations
in performance. As a consequence, most modern HPC centers allocate whole portions of a
cluster exclusively for execution of an application. This model works well for heavy science
users, but is not ideal for mid-range applications that only need to use a few hundred
compute nodes. In particular, these mid-range users have to wait on execution queues
for long periods–sometimes hours or even days–to get to run their jobs. This significantly
lengthens the time-to-solution.

Our work examined what happens when we take these scientific applications off those
private, well-behaved, expensive computing platforms and run them in the cloud.

9



 0

 0.5

 1

L
at

en
cy

 [
m

s]

Message Number

(a) Weblab Instances

 0

 70

L
at

en
cy

 [
m

s]

Message Number

(b) EC2 Small Instances

Figure 6: Latency in Our Weblab Cluster and in EC2 Small Instances

 0

 2.5

 5

L
at

en
cy

 [
m

s]

Message Number

(a) EC2 Cluster Instances

 0

 35
L

at
en

cy
 [

m
s]

Message Number

(b) EC2 Large Instances

Figure 7: Latency in EC2

5.1 Making Time-Stepped Applications Tick in the Cloud

Many data-centric cloud applications proceed in discrete time-steps or “ticks,” using com-
munication barriers at tick boundaries to synchronize computation. One critical assumption
which does not hold in the cloud is that there is a stable, low-latency interconnect among
compute nodes. Recent experimental studies have demonstrated that the cloud suffers from
high latency jitter. We confirmed this observation by measuring the TCP round-trip times
for 16 KB messages in several environments, as shown in Figure 7. These environments
include the Cornell Weblab, which is a modest dedicated cluster of machines interconnected
by Gigabit Ethernet, and Amazon EC2 cloud instances in the 32-bit “Small”, 64-bit “Large”
and 64-bit “Cluster Compute” categories. Note that the scales of the y-axes differ signif-
icantly. Communication in the Weblab is well-behaved, with latencies tightly distributed
around the mean. The 32-bit EC2 instances have poor performance, with high average
latency and high variance. The 64-bit EC2 instance categories show acceptable average la-
tency, but suffer frequent latency “spikes” more than an order of magnitude above the mean.
Even the cluster compute instances, advertised for HPC applications, show the same effect.
Unfortunately, network jitter can severely increase the time required for synchronization
barriers, significantly increasing overall running time.

10



To alleviate the above problem, we developed a general, jitter-tolerant runtime to pro-
cess time-stepped scientific applications in the cloud. Our runtime exposes a high-level,
data-centric API to the scientist, who designates application state as tables and dependen-
cies between state as queries over these tables. Our runtime uses these data dependencies
to (1) carefully schedule computation and (2) replicate data and computation to absorb
latency spikes. Our data-driven approach is completely transparent to the scientist and
requires little additional code. Our experimental results show that our methods improve
performance up to a factor of three for several typical scientific applications.

5.2 ClouDiA: A Deployment Advisor for Public Clouds

Iin the ClouDiA project, we expanded on the above work to create an automated advisor
for deploying time-step based applications in the public cloud. ClouDiA selects application
node deployments minimizing either (i) the largest latency between application nodes, or
(ii) the longest critical path among all application nodes. ClouDiA employs mixed-integer
programming and constraint programming techniques to efficiently search the space of
possible mappings of application nodes to instances.

How applications are deployed on a public cloud can strongly affect performance. To
achieve high utilization, cloud providers inevitably allocate virtual machine instances non-
contiguously, i.e., instances of a given application may end up in physically distant machines
in the cloud. This allocation strategy can lead to large differences in average latency
between instances. For a large class of applications, this difference can result in significant
performance degradation, unless care is taken in how application components are mapped
to instances.

Latency-sensitive applications in the cloud can be classified into two broad classes:
high-performance computing applications, for which the main performance goal is time-to-
solution, and service-oriented applications, for which the main performance goal is response
time for service calls.
Goal: Time-to-solution. A number of HPC applications simulate natural processes via
long-running, distributed computations. At every time step of the simulation, neighboring
nodes exchange messages before proceeding to the next time step. As the end of a time
step is a logical barrier, worst-link latency essentially determines communication cost [AP97,
BJvOR03, KHJ98, ZWS+11] and time-to-solution is dramatically affected by the latency
of the worst link.
Goal: Service response time. Web services and portals, as well as search engines, are
prime cloud applications [AWS, GGL09, Vog07]. The rendering of a web page in these
portals is the result of tens or hundreds, of web service calls [O’H06]. While different
portions of the web page can be constructed independently, there is still a critical path
of service calls that determines the server-side communication time to respond to a client
request. Latencies in the critical path add up, and can negatively affect end-user response
time.

Figure 8 depicts the architecture of ClouDiA. The dashed line indicates the boundary
between ClouDiA and public cloud tenants. The tuning methodology followed by ClouDiA
comprises the following steps:

11



Objectives 

Allocate Instances 

Get Measurements 

Terminate 

 Extra Instances 

Search Deployment 

Deployment Plan 

Communication  

Graph 

Start 

Application 

ClouDiA Public Cloud Tenant 

Figure 8: Architecture of ClouDiA

1. Allocate Instances: A tenant specifies the communication graph for the applica-
tion, along with a maximum number of instances at least as great as the required number
of application nodes. CloudDiA then automatically allocates cloud instances to run the
application. Depending on the specified maximum number of instances, ClouDiA will over-
allocate instances to increase the chances of finding a good deployment.

2. Get Measurements: The pairwise latencies between instances can only be observed
after instances are allocated. ClouDiA performs efficient network measurements to obtain
these latencies. The main challenge is reliably estimating the mean latencies quickly, given
that time spent in measurement is not available to the application.

3. Search Deployment: Using the measurement results, together with the optimiza-
tion objective specified by the tenant, CloudDiA searches for a “good” deployment plan:
one that avoids “bad” communication links. We formalize this notion and pose the node
deployment problem, and we then formulate two variants of the problem that model our two
classes of latency-sensitive applications. Given the hardness of these problems, traditional
methods cannot scale to realistic sizes. We propose techniques that significantly speed up
this search.

4. Terminate Extra Instances: Finally, ClouDiA terminates any over-allocated in-
stances and the tenant can start the application with an optimized node deployment plan.

Through experiments with synthetic and real applications in Amazon EC2, we showed

12



that our techniques yield a 15% to 55% reduction in time-to-solution or service response
time, without any need for modifying application code.

6 Declarative Abstractions for Coordination

The final project we carried out under this grant related to language abstractions for syn-
chronization and coordination. While the other projects demonstrated how to achieve sub-
stantial performance gains through parallelism, this project explored how parallel agents
can work together, communicate and coordinate to achieve common goals. Coordination is
a concept with many applications, whether for social activities such as choosing a time to
see a movie with friends or in more serious applications in line with the typical use cases of
the Air Force, where multiple agents in the field need to coordinate to achieve a military
goal.

While the need for coordination is pervasive, coordination is not commonly supported
by today’s data-related abstractions and is typically achieved through ad-hoc methods (such
as phone calls to organize joint travel plans, followed by a period where everyone tries to
make flight bookings simultaneously and hopes enough seats are available).

In this project, we introduced and developed abstractions for performing coordination
in a principled and mathematically organized manner. We focused on coordination related
to data of some sort, for example the location of a joint trip or a joint tactical strike; we call
this kind of coordination data-driven coordination and we developed declarative languages
and mechanisms to facilitate it. The main idea is to provide a way for users to coordinate
within the system without having to worry about the details of the coordination. Because
the coordination is data-driven, the coordination abstraction is designed to sit at the same
level as other abstractions that relate to the data. Declarativity – allowing users to express
what is to be achieved, rather than how it is to be achieved – has long been an underlying
design principle in databases. In a declarative specification of coordination, the users’ only
responsibility is to state their individual preferences and constraints, and the system takes
care of the rest.

Our main declarative primitive for data-driven coordination is entangled queries; these
are special kinds of queries that database users can pose which express their desire to
coordinate on other values. We have developed the entangled query model in detail, shown
how these queries can be embedded in larger code units such as transactions, and studied
the complexity of the evaluation of these queries.

6.1 Entangled Queries

To see what coordination looks like in a system that supports entangled queries, consider
an example. Suppose Kramer wants to travel to Paris on the same flight as Jerry. In our
system, he can express his request with the following entangled query :

SELECT ‘Kramer’, fno INTO ANSWER Reservation

WHERE

fno IN (SELECT fno FROM Flights WHERE dest=‘Paris’)

13



AND (‘Jerry’, fno) IN ANSWER Reservation

CHOOSE 1

Jerry also wants to travel with Kramer, but he has an additional constraint: he wants
to travel only on flights operated by United. His query is as follows:

SELECT ‘Jerry’, fno INTO ANSWER Reservation

WHERE

fno IN (SELECT fno FROM Flights F, Airlines A WHERE

F.dest=‘Paris’ and F.fno = A.fno

AND A.airline = ‘United’ )

AND (‘Kramer’, fno) IN ANSWER Reservation

CHOOSE 1

For this report, it is enough to understand that Reservation is a name for a virtual re-
lation that contains the answers to all the current queries in the system. The SELECT clause
specifies Kramer’s own expected answer, or, in other words, his contribution to the answer
relation Reservation. This contribution, however, is conditional on two requirements,
which are given in the WHERE clause. First, the flight number in question must correspond
to a flight to Paris. Second, the answer relation must also contain a tuple with the same
flight number but Jerry as the traveler name. Jerry’s query places a near-symmetric con-
straint on Reservation.

Neither user explicitly specifies which other queries he wishes to coordinate with –
e.g. by using an identifier for the coordination partner’s query. Instead, the coordination
partner is designated implicitly using the partner’s query result. This is a deliberate choice
that allows coordination with potentially unknown partners based purely on desired shared
outcomes. In travel planning, of course, it typically is known who one’s coordination
partners will be. However in other scenarios such as MMO games, coordination partners
may be unknown and their identities irrelevant.

When the system receives Kramer and Jerry’s queries, it answers both of them simulta-
neously in a way that ensures a coordinated flight number choice. In general, there may be
many different suitable flights, but Kramer and Jerry only want to make a booking on one
of them. The CHOOSE 1 clause present in both queries specifies that only one tuple is to be
returned per query. The tuples returned must be such that all constraints are satisfied. If
the database is as shown in Figure 9 (a), the system non-deterministically chooses either
flight 122 or 123 and returns appropriate answer tuples. Figure 9 (b) shows the mutual
constraint satisfaction that takes place in answering for 122. The intent is that Kramer
and Jerry should now be able to make a booking on the particular flight mentioned in the
query answer.

The above queries are of course simplified to illustrate the basic coordination mechanic;
in a real travel reservation setting, they would include checks for seat availability and other
factors.

In our work, we formalized entangled queries, extensively studied the complexity of their
evaluation, designed efficient evaluation algorithms for cases where efficient evaluation is
possible, and implemented an end-to-end system that supports them. Experimental results

14



Flights Airlines

fno dest
122 Paris
123 Paris
134 Paris
136 Rome

fno airlines
122 United
123 United
134 Lufthansa
136 Alitalia

(a)

Kramer’s query Jerry’s query

answer tuple: R(‘Kramer’, 122) R(‘Jerry’, 122)

answer relation
constraint: R(‘Jerry’, 122) R(‘Kramer’, 122)

satisfies

satisfies

(b)

1

Figure 9: (a) Flight database (b) Mutual constraint satisfaction

confirm that our evaluation algorithms are practical on workloads based on real social
network data.

6.2 Entangled Transactions

Entangled queries are a useful building block for coordination. However, most real-world
data management applications that involve coordination require not just queries, but a
transaction-like abstraction that covers larger units of work. As an example, assume that
two friends, Mickey and Minnie, wish to travel to Los Angeles on the same flight and stay at
the same hotel. Their arrival date is flexible, but their departure date is fixed. They start by
jointly selecting a suitable flight. Once they know the flight number, and consequently their
date of arrival in Los Angeles, they will try to make appropriate joint hotel reservations.
As explained previously, they can use entangled queries to coordinate on the choice of the
flight and then on their choice of hotel. These queries, however, need to be embedded
within a larger code unit that Mickey and Minnie separately execute and populate with
their constraints such as the class of the hotel or airline restrictions. Once both of their
individual entangled transactions have been submitted, the system needs to match up these
two transactions, execute the associated logic, and guarantee “transaction-like” semantics
for this execution.

In our work, we introduced a model of entangled transactions that comes with analogues
of the classical ACID properties. We considered multiple possible execution models for
entangled transactions and implemented a prototype execution engine. Experiments with
our prototype show that the overheads associated with supporting entangled transactions
are acceptable for real-world use.

15



References

[a] Cornell Database Group Website. www.cs.cornell.edu/bigreddata/.

[AP97] Richard D. Alpert and James F. Philbin. cBSP: Zero-cost synchronization in
a modified BSP model. Technical report, NEC Research Institute, 1997.

[ASS+09] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz, and Richard
Szeliski. Building Rome in a day. In ICCV, 2009.

[AWS] Amazon web services, search engines & web crawlers.
http://aws.amazon.com/search-engines/.

[BJvOR03] Olaf Bonorden, Ben Juurlink, Ingo von Otte, and Ingo Rieping. The paderborn
university BSP (PUB) library. Parallel Computing, 29(2):187–207, 2003.

[CJL08] Su Chen, Christian S. Jensen, and Dan Lin. A benchmark for evaluating
moving object indexes. Proc. VLDB, pages 1574–1585, 2008.

[CKFL05] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. Effective leadership
and decision-making in animal groups on the move. Nature, 433(7025):513–
516, 2005.

[CM10] Ondrej Chum and Jiri Matas. Large-scale discovery of spatially related images.
IEEE Trans. Pattern Anal. Mach. Intell., 32(2):371–377, 2010.

[CSS+11a] Tuan Cao, Marcos Antonio Vaz Salles, Benjamin Sowell, Yao Yue, Alan J.
Demers, Johannes Gehrke, and Walker M. White. Fast checkpoint recovery
algorithms for frequently consistent applications. In SIGMOD Conference,
pages 265–276, 2011.

[CSS+11b] Tuan Cao, Benjamin Sowell, Marcos Antonio Vaz Salles, Alan J. Demers, and
Johannes Gehrke. Brrl: a recovery library for main-memory applications in
the cloud. In SIGMOD Conference, pages 1233–1236, 2011.

[DBVS11] Jens Dittrich, Lukas Blunschi, and Marcos Antonio Vaz Salles. MOVIES:
indexing moving objects by shooting index images. Geoinformatica, 15(4):727–
767, 2011.

[DDGR07] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram.
Google news personalization: scalable online collaborative filtering. In WWW,
2007.

[FFGG+10] J.M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu,
Y.H. Jen, E. Dunn, B. Clipp, S. Lazebnik, et al. Building rome on a cloudless
day. In ECCV, 2010.

[FML04] S. L. Feng, R Manmatha, and V. Lavrenko. Multiple bernoulli relevance models
for image and video annotation. In CVPR, 2004.

16



[GDG+09] N. Gupta, A. Demers, J. Gehrke, P. Unterbrunner, and W. White. Scalability
for virtual worlds. In Proc. ICDE, 2009.

[GGL09] Roxana Geambasu, Steven D. Gribble, and Henry M. Levy. Cloudviews: Com-
munal data sharing in public clouds. In HotCloud, 2009.

[GKB+11] Nitin Gupta, Lucja Kot, Gabriel Bender, Sudip Roy, Johannes Gehrke, and
Christoph Koch. Coordination through querying in the youtopia system. In
SIGMOD Conference, pages 1331–1334, 2011.

[GKR+11] Nitin Gupta, Lucja Kot, Sudip Roy, Gabriel Bender, Johannes Gehrke, and
Christoph Koch. Entangled queries: enabling declarative data-driven coordi-
nation. In SIGMOD Conference, pages 673–684, 2011.

[GNR+11] Nitin Gupta, Milos Nikolic, Sudip Roy, Gabriel Bender, Lucja Kot, Johannes
Gehrke, and Christoph Koch. Entangled transactions. PVLDB, 4(11):887–898,
2011.

[Hen06] Monika Rauch Henzinger. Finding near-duplicate web pages: a large-scale
evaluation of algorithms. In SIGIR, 2006.

[HGI00] Taher H. Haveliwala, Aristides Gionis, and Piotr Indyk. Scalable techniques
for clustering the web. In WebDB, 2000.

[HGO+10] Kyle Heath, Natasha Gelfand, Maks Ovsjanikov, Mridul Aanjaneya, and
Leonidas J. Guibas. Image webs: Computing and exploiting connectivity in
image collections. In CVPR, 2010.

[HZ03] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2nd edition, 2003.

[ISS06] Glenn S. Iwerks, Hanan Samet, and Kenneth P. Smith. Maintenance of k-nn
and spatial join queries on continuously moving points. ACM Trans. Database
Syst., 31(2):485–536, 2006.

[KHJ98] Jin-Soo Kim, Soonhoi Ha, and Chu Shik Jhon. Efficient barrier synchro-
nization mechanism for the BSP model on message-passing architectures. In
IPPS/SPDP, 1998.

[LCG12] Yin Lou, Rich Caruana, and Johannes Gehrke. Intelligible models for classifi-
cation and regression. In KDD, pages 150–158, 2012.

[Low04] David G. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 60(2), 2004.

[LSG12] Yin Lou, Noah Snavely, and Johannes Gehrke. Matchminer: Efficient spanning
structure mining in large image collections. In ECCV (2), pages 45–58, 2012.

17



[MK03] Jussi Myllymaki and James Kaufman. High-performance spatial indexing for
location-based services. In Proc. WWW, pages 112–117, 2003.

[MOS+12] Konstantinos Mamouras, Sigal Oren, Lior Seeman, Lucja Kot, and Johannes
Gehrke. The complexity of social coordination. PVLDB, 5(11):1172–1183,
2012.

[NS06] David Nistér and Henrik Stewénius. Scalable recognition with a vocabulary
tree. In CVPR, 2006.

[O’H06] Charlene O’Hanlon. A conversation with werner vogels. ACM Queue, 4(4):14–
22, May 2006.

[PCC04] Jignesh M. Patel, Yun Chen, and V. Prasad Chakka. STRIPES: an efficient
index for predicted trajectories. In Proc. SIGMOD, pages 635–646, 2004.

[SCS+14] Ben Sowell, Tuan Cao, Marcos Vaz Salles, Alan Demers, and Johannes Gehrke.
An experimental analysis of iterated spatial joins in main memory. In Proced-
ings of the VLDB Endowment (to appear, accepted for publication), 2014.

[SGWG06] Daria Sorokina, Johannes Gehrke, Simeon Warner, and Paul Ginsparg. Pla-
giarism detection in arXiv. In ICDM, 2006.

[ŠRJŠ11] Darius Šidlauskas, Kenneth Ross, Christian Jensen, and Simonas Šaltenis.
Thread-level parallel indexing of update intensive moving-object workloads.
In Advances in Spatial and Temporal Databases, volume LNCS 6849, pages
186–204. Springer Berlin / Heidelberg, 2011.

[SSB05] Ellen Spertus, Mehran Sahami, and Orkut Buyukkokten. Evaluating similarity
measures: a large-scale study in the Orkut social network. In KDD, 2005.

[SSS06] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: exploring
photo collections in 3d. ACM Trans. Graph., 25(3):835–846, 2006.

[TBTL07] Douglas Turnbull, Luke Barrington, David Torres, and Gert Lanckriet. To-
wards musical query-by-semantic-description using the CAL500 data set. In
SIGIR, 2007.

[Ver67] Loup Verlet. Computer ”experiments” on classical fluids. i. thermodynamical
properties of lennard-jones molecules. Phys. Rev., 159(1):98, 1967.

[vJLL00] Simonas Šaltenis, Christian S. Jensen, Scott T. Leutenegger, and Mario A.
Lopez. Indexing the positions of continuously moving objects. In Proc. SIG-
MOD, pages 331–342, 2000.

[Vog07] Werner Vogels. Data access patterns in the amazon.com technology platform.
In VLDB, page 1, 2007.

18



[WDK+07] W. White, A. Demers, C. Koch, J. Gehrke, and R. Rajagopalan. Scaling games
to epic proportions. In Proc. SIGMOD, 2007.

[WSS+10] Guozhang Wang, Marcos Vaz Salles, Benjamin Sowell, Xun Wang, Tuan Cao,
Alan Demers, Johannes Gehrke, and Walker White. Behavioral simulations in
mapreduce. Proc. VLDB, 3:952–963, September 2010.

[WXDG13] Guozhang Wang, Wenlei Xie, Alan J. Demers, and Johannes Gehrke. Asyn-
chronous large-scale graph processing made easy. In CIDR, 2013.

[ZBS+12] Tao Zou, Ronan Le Bras, Marcos Antonio Vaz Salles, Alan J. Demers, and
Johannes Gehrke. Cloudia: A deployment advisor for public clouds. PVLDB,
6(2):109–120, 2012.

[ZLG11] Jiaqi Zhai, Yin Lou, and Johannes Gehrke. Atlas: a probabilistic algorithm for
high dimensional similarity search. In SIGMOD Conference, pages 997–1008,
2011.

[ZWS+11] Tao Zou, Guozhang Wang, Marcos Vaz Salles, David Bindel, Alan Demers,
Johannes Gehrke, and Walker White. Making time-stepped applications tick
in the cloud. In SOCC, 2011.

19


	Overview
	Parallel Graph Processing
	Combining synchronous and asynchronous models
	Increasing performance through block execution

	Benchmarking Spatial Indexing
	Image Processing and Parallel Similarity Search
	Image processing
	Scalable Parallel Similarity Search

	Data-Driven Applications in the Cloud
	Making Time-Stepped Applications Tick in the Cloud
	ClouDiA: A Deployment Advisor for Public Clouds

	Declarative Abstractions for Coordination
	Entangled Queries
	Entangled Transactions




